If it's not what You are looking for type in the equation solver your own equation and let us solve it.
31t^2+15t=0
a = 31; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·31·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*31}=\frac{-30}{62} =-15/31 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*31}=\frac{0}{62} =0 $
| t^2+12t+11=0 | | 3/4t+5=9 | | 2j^2-17j+15=0 | | 4x2+x+1=35 | | 7+4(3d-1)=0 | | 41h^2-14h=0 | | 3b+49=9b-51 | | N-(-6)=y | | d^2+17d-18=0 | | 56=9y-8+y+8 | | m^2-24m+23=0 | | 1/2(7×14/5-6)=6x-10 | | 5y+8=14y-10 | | 6x+8=2x=4 | | u+48=17u | | (v-2)^2-40=0 | | N=(1-d) | | y+80=11y | | f-21=19 | | 0.08(y-5)+0.10y=0.20y-0.3 | | 9w+4=0 | | 19v-59=15v-39 | | x+1/3×=60 | | 3c+49=70 | | √y2+49=y+7 | | 3c+49+70=180 | | -5=-9+u | | 2(x+10)=55 | | s+60=11s | | 7x+10=4x-3 | | 9x-69=x+3 | | 7d^2+20d=0 |